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Abstract 

A complete algebraic treatment of quantum problems with arbitrary central potential 
is given in terms of broken 0(4) invariance. This is done within the quasiclassical accuracy. 
More precisely, a generalised Runge-Lenz (RL) vector is built as a non-conserving 
member of the 0(4) Poisson brackets algebra. Its algebraic partner is the orbital momen- 
tum. The requirements imposed on the RL vector are as follows: (i) its length is conserved, 
(ii) it rotates following the procession of the orbit, (iii) it vanishes for the circular motion. 
These requirements suffice for unique determination of the RL vector. This enables us 
to express the Hamiltonian of an arbitrary central problem as a function of the 0(4) 
Casimir invariant and the angular momentum squared. The dependence upon the latter 
(generally very complicated) describes the way in which the symmetry is broken for a 
given potential. Replacing the 0(4) Casimir operator and the angular momentum by 
their known eigenvalues results in the Bohr-Sommerfeld quantisation rules. 0(4) 
multiplets of energy levels free of angular momentum degeneracy are described, examples 
a r e  considered, and the inverse problem is discussed. 

1. Introduction 

We suggest a scheme based on the Lie algebra o f  the 0(4) group that  
provides a f ramework for handling three dimensional quan tum problems 
with arbitrary central attractive potential. The c o m m o n  feature o f  the 
present approach  and o f  those in the literature (Barut, 1964; Budini, 1966; 
M u k u n d a  et al., 1965) is the use o f  non-conserving generators, which are 
necessary if  one deals with the problems free f rom the corresponding 
symmetry group. We describe the bounded  mot ion  in an arbitrary central 
field o f  force in terms of  the broken 0(4)  symmetry,  the way it is broken 
being determined by the properties o f  the potential. The hydrogen a tom 
exhibits the exceptional case when the breaking disappears in accordance 
with the well-known result o f  Fock  (1935) and Bargmann (1936). Our  
scheme, when realised, implies the possibility o f  re-expressing the 
Hamil tonian,  H =  (p2 /2)+  V(r),  in terms o f  the integrals o f  mot ion :  the 
Casimir invariant and the angular  momen tum squared. The discrete energy 
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spectrum classification may be given according to irreducible representa- 
tions of the 0(4) group. 

In Section 2 we present our broken 0(4) symmetry scheme using the 
language of the Poisson brackets relation between classical functions, 
since this is the only thing we are able in fact to realise. We further formulate 
the problem of quasiclassical quantisation that is reduced to replacement 
of the Casimir invariant and angular momentum squared by their known 
eigenvalues in the classical expression of the Hamiltonian. In Section 3 we 
build the 0(4) generators obeying the scheme of Section 2 as explicit classical 
functions of position and momentum of the particle moving in a given 
central field of force. The problem of making these generators single-valued 
is solved in Section 4 by considering their connection with the geometry 
of the nonstationary orbit of the particle. As a result we find a closed 
expression for the Casimir invariant in terms of the energy and the orbital 
momentum squared. The quantisation prescriptions of Section 2 now lead 
to the Bohr-Sommerfeld rules of the old quantum theory. In Section 5 
several potentials are considered as examples (the square well potential being 
among them). In Section 6 the inverse problem is outlined: how the potential 
can be restored if the Hamiltonian is given as a function of the Casimir 
invariant and the orbital momentum squared. 

2. Formulation of the Approach 

Let us have a Hamiltonian 
p2 

n = - ~  + V(r) (2.1) 

as a classical, spherically symmetric, function of momentum p and position 
r. Let, together with the conserving angular momentum vector L = r x p, 

{L,,H} =0,  i =  1,2,3 (2.2) 

a (generally) non-conserving vector A exist: 

{At, H} =~ 0, i =  1,2,3 (2.3) 

We call it the Runge-Lenz vector in analogy with the hydrogen atom. 
It will also be expressed as a function of r and p. Let the components of A 
and L form the 0(4) algebra 

{A,,Aj} = efskL~,{Li, As} = e,jkA~,{L,,Lj} = e,jkLk (2.4) 

The curly brackets in equations (2.2), (2.3), (2.4) and in what follows are 
the Poisson brackets, eisk is the completely antisymmetric unit tensor. 
The quantity L 2 = Li 2 is the Casimir invariant of the 0(3) subalgebra: 
{L2,L~} = 0. One can also form two Casimir invariants G~. 2 of the 0(4) 
algebra according to the known rules: 

61 = �89 2 + A 2) (2.5) 

G2 = (LA) (2.6) 
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that commute with all the 0(4) generators: 

{G1,2,A,} = 0, {G1, 2,Li} = 0 (2.7) 

We confine ourselves to considering the vector A lying in the plane of  
motion, i.e. in the (r,p)-plane. Hence 

G2 = 0 (2.8) 

and we shall usually speak about a single Casimir invariant (2.5). (The 
subscript '1' will be omitted everywhere below.) 

Demand that the Casimir invariant be an integral of motion 

{G, H} = 0 (2.9) 

According to equations (2.5), (2.2) this means the constancy of the length 
of the Runge-Lenz vector {A 2, H} = 0. The quantities G, L 2 and, e.g. La, 
may form a 'complete set of commuting integrals of motion', and the 
Hamiltonian is nothing but a function of them, H =  H(G,L:,La) (see 
Appendix for the proof, if necessary). Now the spherical symmetry (2.2), 
together with the relations {G, LI} = {L 2 ,Li}  = 0,  forbids the La-dependence 
of the Hamiltonian and we are left with 

H = H(G, L 2) (2.10) 

In the case of non-broken 0(4) symmetry one has { A , H }  = O, instead of 
equation (2.3) and Hdoes not depend upon L 2, since {G, A~} = O, {L 2, Ai} :~ O. 
This is the 'accidental' degeneracy of the hydrogen atom. In Section 4 we 
shall find the function (2.10) as a functional of the potential. The L 2- 
dependence of it will determine how specifically the 0(4) symmetry is 
broken for one or another potential. 

We emphasise that the set of conditions (2.2)-(2.9) implies no restrictions 
on the Hamiltonian (2.1). Just the opposite is true: after we built an explicit 
expression for A in Section 3 we saw that it contains too much arbitrariness. 
The arbitrariness is so strong that the function (2.10) remains completely 
undetermined. This means that the algebraic scheme described above does 
not, by itself, contain sufficient dynamical information, this fact not being 
unexpected. In Section 4 we overcome this ambiguity by imposing two 
additional requirements on the Runge-Lenz vector, which in some sense 
relate this vector to the moving particle. This will enable us to represent 
the Hamiltonian (2.1) uniquely in the form (2.10). 

Keeping this in mind we shall now formulate the problem ofquantisation 
consistent with the algebraic scheme described. 

Consider an operator realisation of the Poisson brackets 0(4) algebra 
(2.4), (2.7) and adopt (2.10) as an operator function for H. Then G, L 2, La 
and H have a common set ~,, t,,~ of eigenvectors, labelled by the eigenvalues 
associated with the Casimir operators of 0(4) (G) and its subgroups (L2,La): 

h :  n 2 - 1 
G~,,,l,,,, = ---2-- ~,,, l, ,,, ; n = 1,2,3 . . . .  
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LZ~k.,,,m=h2l(l+l)~h,,~,m; l = 0 , 1 , 2 . . . ( n -  1) 

Latpn, l,m = hm~,,t,,,; -I<<. m ~ I, 

H(G, L2)~k,,,,m= H(hZ(n2-1),h2 l(l + l))O,,t,m= E,,,~,,t,,, (2.11) 

Here we have taken into account the fact that the commutativity between 
the Casimir operators and generators survives under multiplication by a 
constant factor h which should have, in (2.11), the dimensionality of 
Planck's constant and is taken as equal to the latter in accordance with 
the usual quantisation prescriptions. 

One should be aware that, generally, the above operators are only 
approximately (with the accuracy of h) equal to those which may be obtained 
by naive replacement of r and p by the quantum operators ~ and ~, with 
the commutation relations [~,fiA = ihS~ in the classical functions represent- 
ing L, A, G, H. Therefore the energy spectrum to be obtained by substitution 
ofh2(n 2 - 1) and h 2 l(l + 1) for 2G andL 2, respectively, in the above function 
H(G, L2), has a quasiclassical nature. With our determination of H(G,L 2) 
(Section 4) the quantisation rules arising are essentially those of Bohr 
and Sommerfeld. 

The energy levels classification is based on the fact that the set of 
~ - ~  (21 + 1) = n 2 vectors ~,. ~, ~ forms a basis of the irreducible representa- 
tion of the 0(4) group ~ [ ( n -  1)/2, ( n -  1)/2], i.e. the corresponding n 2 
energy levels E.. ,  are joined into one 0(4) multiplet. Among these n z levels 
there is an ordinary magnetic quantum number degeneracy. There remains 
n 0(3) submultiplets with different energy: the orbital momentum 
degeneracy does not, generally, occur within the same O(4)-multiplet. 
The quantum number n is connected with the radial quantum number nr 
involved in the Bohr-Sommerfeld quantisation and corresponding to the 
number of zeros of the Schr6dinger wave function by the same formula 
as the hydrogen principle quantum number is: 

n = nr + I +  1 (2.12) 

All levels with different nr and l, but with the same n, are joined into one 
0(4) multiplet. This classification is valid for every central potential. An 
important case of harmonic oscillator is especially traced in Section 5. For 
problems with finite number of bound states the multiplets may be occupied 
either by stable or by quasistable states. (Note the difference with Mukunda 
et aL (1965).) 

3. Non-conserving Runge-Lenz Vector 

The vector obeying the conditions (2.4), (2.7), (2.8), (2.9) can be looked 
for in the following form 

2 r •  
A = R(r, L ,  H)  r + W(r, L e, H)  r (3.1) 

rL 
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where R and W are unknown scalar functions of the position vector length 
r, angular momentum squared L 2 and the energy H =  (p2/2)+ V(r). 
(This is equivalent to dependence upon the three independent scalars 
r, p, rp.) The unit vectors in (3.1) are mutually orthogonal and L ~ ~/L 2. 
Equation (3.1) is the most general expression for the vector located in the 
plane of motion, the fulfilment of equation (2.8) being thus guaranteed. 
It was explained in the previous section that the Casimir invariant is a 
function of the energy and angular momentum squared. Thus the first 
of equations (2.7) reads 

(A, G(H, Lz)) = 0 (3.2) 

Since the brackets {G,L 2} and {G, H} vanish one has to differentiate R and 
W in (3. I) only with respect to r at fixed values of H and L 2 when calculating 
the bracket (3.2). Thus equation (3.2) takes the form 

OG - rl(ro)a" + 
rLtr dr 

r x L r l  L (rp)dW\ aG aG-I 

where (rp)/r = ~ / [ 2 ( H -  V( r ) ) -  (L2/r2)]. Equating the expressions in the 
square brackets with zero one reduces (3.3) to the set of two first-order 
differential equations for R and W with L 2 and H as constant parameters. 
This set can be solved and we finally have for (3.1) 

r x L  \ 2 A=(~cos~ + ~ s i n ~ ) C ( H , L  ) (3.4) 

where 

r I - 2Fr 2 { 2 ( H -  V(r)) I ]-,/z 
k g~ r2 ] dr (3.5) 

d 
rl(H,L 2) 

and F denotes the following ratio 

F= aG/~L2 
OG/OH (3.6) 

In equations (3.4), (3.5) C(H,L 2) and rl(H,L 2) are two arbitrary functions. 
The angle (3.5) may be also represented as ~ = q~ - 2FLt in terms of the 
angular position ~b of the particle and the corresponding time t, with the 
initial conditions: t = 0, ~ = 0, r = rl. 

The Runge-Lenz vector (3.4), (3.5), (3.6) satisfies equation (2.4) if G is 
represented as (2.5) with no further restrictions imposed on it. This is 
natural since the second of the relations (2.4) is a consequence of the third 
one and merely shows the way a vector transforms under the infinitesimal 
space rotation produced by L. The first of the relations (2.4) can be easily 
shown to follow from the rest of them and from equation (2.7), (2.8) if one 
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takes into account that all the vector and tensor quantities must be con- 
structed from r, p, 61j and eijk. 

Equation (2.3) for the vector (3.4) looks like 

{A, ,H}  = 2FL(~sin  ~r _ ~r x L cos ~) (3.7) 

It can be seen from equations (3.7), (3.6) that the vanishing of  Fmeans  the 
conservation of A and corresponds to the L2-independent Casimir invariant 
(2.5) in agreement with that the fact mentioned in Section 2. The F = 0 limit 
of  equation (3.5) reduces expression (3.4) to Fradkin's (1967) integral of  
motion (see also Bacry et al. (1966) and Mukunda (1967). We studied this 
case in our previous paper (Serebrennikov & Shabad, 1971). 

The length squared of  the Runge-Lenz vector (3.4) is 

A 2 = C2(H,L 2) = 2G - L 2 (3.8) 

the Casimir invariant (2.5) being thus completely undetermined. This is 
the arbitrariness mentioned in Section 2. We shall, in Section 4, fix all the 
arbitrary quantities involved in equations (3.4), (3.5). 

4. Incorporating o f  Dynamics 

In order to attribute dynamical significance to the nonconserving 
Runge-Lenz generator, built in the previous section, it is necessary to 
connect it with the geometry of  the particle motion. Restrict first of  all the 
nonconservation (2.3) of  the Runge-Lenz vector. Remember that the lack 
of  the 0(4) symmetry in an arbitrary central problem is due to the un- 
closedness of  the orbits of  classical bounded motion. Thus the noncon- 
servation of the Runge-Lenz vector (i.e. the breakdown of the 0(4) 
symmetry) is to be responsible for the precession of the orbit. This will 
be provided if one demands that 

/'max 

f 1 -- 2Fr 2 (2(H~L2V(r)) 1"~ -1,2 
r2 dr = (4.1) 

rmln 

where the radial coordinates of the turn points rml . . . . .  (H,L 2) are the two 
solutions of  the equation 

2(H -- V(r)) r z - L a = 0 (4.2) 

Requirement (4.1) means that the quantity {, defined by (3.5), undergoes 
the increment equal to rt when the particle comes from the perigee (rmin) 
to the apogee (rmax) point. With the choice rl = r=in in equation (3.5) 
condition (4.1) restricts the motion of  the Runge-Lenz vector (3.4) in such 
a way that it is (anti)parallel to the position vector of the particle every 
time the latter passes its (apogee) perigee point (see Fig. 1). Thus following 
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the angular precession of the perihelion the Runge-Lenz vector rotates. 
Recall that its length is an integral of motion according to (2.2), (2.9), 
(3.8). For the Coulomb case (V(r)=-~]r) the function F vanishes and 
requirement (4.1) is fulfilled if the integral is calculated. 

0 

/ 1 \  / 

Figure 1.--Runge-Lenz vector meets the particle every time it passes the perigee points 
when travelling along the nonstationary orbit. 

Expressing F from (4.1) one obtains 

F(H, L2 ) = (aS/OL 2) + (n/2L) (4.3) 
OS/SH 

where 57 is the action integral: 

rmax 

S(H, L2)= f ( 2 ( H -  V(r))r z-L21/2dr) r (4.4) 

rmln 

Now we may regard equation (3.6) as a first-order partial derivative 
differential equation for the Casimir invariant G(H, L2). With the use of 
equation (4.3) for F the general solution of equation (3.6) may be written 
in the form 

S + ~L = f2(G) (4.5) 

where f2 is arbitrary function of G. To specify this function one needs to 
formulate another requirement that would provide a boundary condition 
for equation (3.6). 

In the (H, L2)-plane the boundary of classical motion Hn(L 2) is provided 
by the circular orbit. To get it one has to solve the equation 

rmln = rmax (4.6) 
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or, equivalently, to soNe the equation 

d V  L 2 
dr + r-~ = 0 (4.7) 

together with equation (4.2). Now we demand that the Runge-Lenz vector 
(3.4) vanish for the circular motion since in this limit there is no special 
direction in the plane of orbit. In the framework of nonbroken symmetry 
({Ai, H} = 0 instead of equation (2.3)) this property has been established by 
Bacry et al. (1966) and by the present authors (Serebrennikov & Shabad, 
1971). It sufficed for unique determination of the Casimir invariant and 
was used by us in the paper cited to obtain/-degenerate energy spectrum 
for arbitrary central problem as an O(4)-symmetric approximation to the 
true quasiclassical spectrum. 

Now imposing the requirement discussed implies: 

L 2 
G(H~(L2), L 2) = -~- (4.8) 

Taking into account the vanishing of expression (4.4) for the circular case 
one obtains from (4.5) the solution of equation (3.6) with the boundary 
condition (4.8): 

S ( H , L  2) + nL = zcV'(2G) (4.9) 

This is our final expression for the 0(4) Casimir invariant in terms of the 
Hamiltonian and angular momentum squared. If  the action (4.4) can be 
calculated explicitly equation (4.9) allows determination of the function 
(2.10). 

The quantisation prescription, according to Section 2 is to substitute 
2G--~h2(n 2 -  1), L 2 - + h Z l ( l +  1). If  one makes besides the substitution 
h2(n 2 - 1) -+ h2n 2 and h21(l + 1) -+ h2(l + �89 which is allowed within the 
accuracy of h, one comes to the Bohr-Sommerfeld quantisation rule: 

S ( H ,  h:(l + �89 = ~h(n - l -  �89 = ,h(n,  + �89 (4.10) 

where we put n = n, + l + 1 in agreement with (2.12). 
Note that the only restrictions on the potential used throughout this 

section are imposed by the presence of the region of finite-range classical 
motion. The strongly singular potentials showing the fall down into the 
centre are also untreatable. 

It is known that the Bohr-Sommerfeld quantisation gives the h - +  0 
limit of the Schr6dinger equation energy spectrum if n and l are large. 
Our extra interpretation of this fact reduces to the remark that the Casimir 
invariant G is a classical quantity (as well as is the orbital momentum L 2) 
and should be kept fixed while the limiting transition h -+ 0 is being carried 
not. 

In this section we have derived the Bohr-Sommerfeld quantisation rules by 
imposing the two conditions on the Runge-Lenz vector. We can also make 
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the inverse development, proceeding from (4.10). Taking (2.12) into 
account and expressing n and l as n = ~/(2G)/h,  l = L/h,  we obtain the 
classical Casimir invariant in the form (4.9) (h should be neglected every- 
where). Now one can see that our requirements (4.8) and (4.1) are satisfied. 
We conclude, that these requirements imposed within the broken 0(4) 
scheme described in Section 2 are completely equivalent to the Bohr-  
Sommerfeld quantisation. 

5. E x a m p l e s  

Here we consider several potentials and give explicit expressions for the 
corresponding Hamiltonians in terms of  the Casimir invariant and the 
angular momentum squared. For  the examples considered in this section 
we trace explicitly how the limiting transition h -+ 0 in the exact quantum 
spectra gives the results coinciding with those of  our method. 

A.  Potent ia l  is V ( r )  = -c~/r + fl/r2; o~, fl > 0 

One obtains from (4.9): 

fl ~2 1 (5.1) a~r2 =P,~ r 2 (V'(2G) - L  + ~v/(L 2 + Eft)) 2 
H 

The substitution 2G = h2(n 2 - 1), L 2 = h 2 l( l  + 1) gives the spectrum 

ct 2 1 
E,.~ = (5.2) 

2 (,v/(h2(n 2 - 1)) - a/(h 2 l ( l  + 1)) + ~/(h 2 l ( l  + 1) + 2fl)) 2 

The exact spectrum, obtained by solving the SchrSdinger equation may be 
represented as 

~2 
E . , ,  = -~- 

1 
x 

(~/(hZ(n 2 - 1) + h 2) - ~/(h 2 l ( l  + 1) + h2/4) + ~/(h 2 l ( l  + 1) + h2/4 + 2fl)) 2 

(5.3) 
where n = nr + l + 1, nr = 0, 1, 2 .... It can be readily seen that (5.3) reduces 
to (5.2) if the limit h ~ 0  is carried out with 2 G = h 2 ( n  2 -  1) and 
L 2 = h 21(1 + 1) kept fixed. Note that the traditional replacement of  l ( l  + 1) 
by (l + �89 together with the replacement of  (n 2 - 1) by n 2 turns the quasi- 
classical result (5.2) into the exact quantum spectrum (5.3). This fact, 
however, is out of  the scope of  the present consideration. In the limit fl = 0 
one obtains the Coulomb potential V ( r )  = - a / r ,  possessing the symmetry 
(OG/OL z = 0). Equation (5.2) gives the degenerate spectrum 

0~ 2 

En 2h2(n 2 -  1) 

The spectrum could be given the exact quantum form E, = -(~2/2hZn2) if  
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one took into account that in this case the 0(4) is an exact quantum sym- 
metry group. 

B. Potential is V(r) = o92r2/2 + fl/r 2, fl > 0 
According to (4.9) the Hamiltonian has the form 

H=P~2 0~2r2 r~_ 5 + ~ + = o~(~/(L 2 + 2fl) - 2L + 2X/(2G)) (5.4) 

and the spectrum is 

E,,., = hco(J ( l ( l  + l) + ~ )  - 2.v/l(l + l) + 2a/ (n2-1))  (5.5) 

which should be compared with the true quantum spectrum 

2 2/~ 1) 

2fl + 2n) (5.6) 

where n = n, + l +  1, nr = 0, 1, 2 .... Substituting here n and 1 expressed as 

n---J(~-G + 1), ' = ~ ( J ( 1  + 4L2] - 1 ) h Z , /  

and putting h = 0 we obtain (5.4). Note again that the change l(I + 1) -+ 
(l + �89 and n 2 - 1 ---> n 2 turns (5.5) into the exact expression (5.6). 

Consider now isotropic harmonic oscillator fl = 0. There are two perigee 
points on the closed elliptical orbit, since the centre of force coincides 
with the centre of  the ellipse. The Runge-Lenz vector (3.4) meets the 
particle twice a period, while rotating with the same angular velocity as the 
position vector does but in the opposite direction. It takes a very simple 
form 

A 1 l / H + 3 c o L ~ ( _ r m + ~  ) (5.7) 

The Poisson brackets between equation (5.7) and the expression 2wV'(2G) = 
H + toL vanish. The function (3.6), (4.3) is F = -(o9/2L). The Hamiltonian 
(5.4) reduces to 

H ~  f'O2 r 2 
+ 2 -  = og(2~/(2G)-L) (5.8) 

and the spectrum (5.5) becomes 

E,., = hm(2v'(n 2 - 1) - ~/(l(l + 1))) (5.9) 

while the exact spectrum is 

E,,r., = hco(2nr + l + 3) (5.10) 
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It  is well known (Jauch & Hill, 1940) that the oscillatory problem possesses 
the exact SU(3) symmetry. One SU(3) multiplet joins the levels with the 
same value of the 'oscillatory principle quantum number '  no~ =2n~ + l + 1, 
the energy (5.10) being degenerate within this multiplet: E,,, ~ = hco(no~ + �89 
nose = 1, 2 ... .  On the contrary, the 0(4) multiplet joins the levels with the 
'hydrogen principle quantum number '  n = n~ + l + 1 kept fixed and the 
energy is different for different members of  the multiplet since 0(4) is not 

:O~ ok 

: "xj. 

Figure 2.--Comparative classification of the oscillator levels via SU(3) and 0(4) groups. 
Squares denote the 0(3) degenerate submultiplets. Each horizontal (dashed) line connects 
the members of one SU(3) multiplet ~(nosc - 1,0), nose = 2n, + l + 1. Each sloped (solid) 
line connects the members of one 0(4) multiplet ~l(n - 1)/2, (n - 1)/2], n = n, + l + 1. 

a symmetry group of  this problem. Now (5.10) takes the form E,,.z = 
hog(2n- l - � 8 9  n = 1, 2 ... .  comparable with (5.9) according to the rules 
above described. One 0(4) multiplet with a given n includes the levels 
belonging to several SU(3) multiplets (see Fig. 2). Namely, the n~th member 
of  the nth 0(4) multiplet belongs also to the SU(3) multiplet with no~c = 
n + n~. Vice versa, the level n,, of  the SU(3) multiplet characterised by the 
definite value of  no~c belongs to 0(4) multiplet with n = no~c - n~. 

C. Finite Depth Well Potential 
As an example with a finite number of  stable bound states consider the 

finite depth square potential well: 

V(r) = {0, r <  ro 
Vo>0,  r> ro 

Equation (3.6) should be considered in the region bounded by the circular 
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orbit condition HB = L2/2ro 2 and by the condition H < Vo + L2/2ro 2, which 
prevents the particle from escaping to infinity. Equation (4.9) gives 

L 
~ / ( 2 G ) =  ~c/(2Hro2-L2) + L [ ~ z -  arccos( -ro~2H))]  (5.11) 

which also can be obtained as the h -+ 0 limit of the exact quantum equation 
for the energy spectrum after substitution of n~ = n - 1 - 1, n ~ V'(2G)/h, 
l ~ L/h. Consider the S-states: L 2=  0. Then equation (5.11) gives the 
spectrum (n = nr + 1): 

7Z 2 
E , , o -  2 2 1) (5.12) - h 2roZ (n - 

where n may not exceed the value a/((2 Vo roZ/h 2 n2) + 1) since otherwise the 
energy would fall outside the above boundary H = Vo + L2/2ro 2. Every 
s-state l = 0 is a beginner of an 0(4) multiplet of levels 0 ~< l ~< n - 1, some 
of them being in fact quasistable. The levels of a given multiplet are inside 
the above region if the beginner is there thanks to the fact that the condition 
L 2 ~< 2G or l(l + 1) ~< n 2 - 1 admits all the values 0 ~ l ~< n - 1 (remember 
that the equality L 2 = 2G relates to the circular orbit). 

6. Inverse Problem 

In this section we discuss briefly the question of whether the potential 
can be restored if the Hamiltonian is originally given as a function (2.10) 
of the invariant operator of the Group (G) and of the symmetry breaking 
operator (L2). 

It is clear that the Hamiltonian cannot be found in the form (2.1), if an 
arbitrary function (2.10) is given, since the latter contains two independent 
parameters (G and L2), whereas the potential V(r)  contains only one (r). 
It is possible, however, to take H ( G , L  2) as arbitrary function K ( L  2) = 
H(L2/2 ,L  2) on the circular orbit where 2G = L 2 in accord with (4.8). In 
this case potential can be restored almost uniquely. For doing this it is 
sufficient to solve the following differential equation for V(r): 

dV  
~-~r r + V(r) = K r s ~-r (6.1) 

For obtaining this we expressed L 2 from equation (4.7) and H from equation 
(4.2) (recall that the set of equations (4.2), (4.7) determines the circular 
orbit). The change of independent variable u =- (2r2)  -t  reduces equation 
(6.1) to a standard form of the differential equation of Clairaut type which 
can be always solved in parametric form. After the potential is found the 
function H ( G , L  2) can be determined according to the rules of Section 4 
also off the circular orbits. We therefore have a tool to verify whether a 
given broken symmetry construction may be produced by a potential and 
to find this potential (we mean the potential acting in some fietitions (e.g. 
isotopic) space). 
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7. Concluding Remarks 

In the present paper we have developed a broken 0(4) symmetry approach 
to every central problem. This approach is dynamically realised within 
the quasiclassical quantisation. We believe, however, that exact quantum 
problems with arbitrary potential can also be dealt with via the same 
algebraic frame. The main practical obstacle for doing this is the lack of 
isomorphism between the Poisson brackets algebra and that of commu- 
tators. The thing to be done is to find an appropriate definition of the 
operators obtained by the substitution of the noncommuting quantities 

and ~ for the canonical variables r and p in the classical expressions for 
the 0(4) generators, obtained in Sections 3 and 4. This should result in 
operators that on the one hand coincide with the above classical expressions 
in the limit h = 0 (the correspondance principle) and on the other hand 
preserve the 0(4) algebra and the conservation of its Casimir operator. 
This problem is far from being simple: up to now its solution is known 
only for the Coulomb problem where the appropriate definition is the 
Weyl symmetrisation of ~ and ~. A solution can also be given for the 
quantum oscillator (to be published elsewhere). In the general case a 
natural program is to try to formulate some step-by-step procedure. At 
every step we must have some approximate prescription for ordering 
operators inside the expressions of the Runge-Lenz vector to provide the 
necessary 0(4) commutation rules up to some power of h. This procedure 
is expected to be formulated within one or another version of the WKB 
method, and may be useful for this method by attributing an algebraic 
frame to it. 

On the other hand one may expect some applications of the present 
results prior to making them more accurate. This hope is due to the fact 
that our (quasiclassical) approximation is physically interesting. One 
should remember that the broken symmetry or the current algebra 
approaches in the theory of elementary particles sometimes work within 
this accuracy (compare, e.g. the tree approximation in the chiral dynamics). 
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Appendix 

Here we present a proof for the Hamiltonian to be a function of three 
independent integrals of motion G, L 2, L3 if the Poisson brackets among 
them vanish. When these quantities are given as functions of the coordinates 
r~, r2, r3 and momenta p~, P2, Pa, one may express the p's as 
p~=f~(G, LZ,L3,ra,r2,r3) provided there is not a single relation inter- 
connecting the quantities G, L 2, La, rl, r2, 1"3. We refer to this condition as 
an independence of G, L 2, L3 and always assume it to be fulfilled. On 
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eliminating the momenta from the Hamiltonian (2.1) one may express the 
partial derivative (aH/ari)o. ,2, L3 calculated with G, L 2, La kept fixed, as 
follows: 

(aH) aH aHafk 

dp, drka A dr k[aA aA~ 
= dt -~ dt a r i -  dt karl ark] (A.1) 

In deriving (A. 1) we used the Hamilton equations of  motion and the fact 
that G, L 2, L3 are the integrals of  motion. It is known (see Whittaker (1944)) 
that the Poisson brackets ((pi - f 0 ,  (Pk -fk)) ,  i, k = 1, 2, 3 vanish if the 
brackets of  G, L 2, Lz do so. Consequently, (afdark) - (afUar~) = 0 and the 
partial derivative (A.1) vanishes. We conclude that the Hamiltonian does 
not depend upon r~ after substitution ofp~ =f~(G, L2,L3, r). This completes 
the proof. 

Note that G, L 2, La may be referred to as new coordinates, say Q1, Q2, 
Q3. Due to the above property (afU~ri) = (afUar~) the expression ~ Pi dri 
is a perfect differential and thus a contact transformation from the set r~, 
pi to the set Q~, N~ can be defined. It is sufficient to define a generating function 
W(rl,r2,ra, Q1, Q2, Q3) as a solution of the equations aW/Ori =f~(r~,r2,ra, 
Q1, Q2, Q3). The new momenta are then Ni = --(4 W/O Qi). The Hamiltonian 
remains unchanged under this contact transformation since (aw/at)= o, 
and its independence upon the ~ ' s  is due to the invariance of the Poisson 
brackets under the contact transformation {H, Q~} = -OH/ONi = O. 
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